
fswatch

fswatch
Cross-platform file change monitor with multiple backends

for fswatch version 1.17.0, 23 June 2022

Enrico M. Crisostomo

This manual is for fswatch (version 1.17.0, 23 June 2022), a cross-platform
file change monitor with multiple backends: Apple macOS File System
Events, *BSD kqueue, Solaris/Illumos File Events Notification, Linux inotify,
Microsoft Windows ReadDirectoryChangesW and a stat()-based backend.

Copyright c© 2013-2021 Enrico M. Crisostomo

Permission is granted to copy, distribute and/or modify this doc-
ument under the terms of the GNU Free Documentation License,
Version 1.3 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the sec-
tion entitled “GNU Free Documentation License”.

i

Short Contents

1 Version History . 1

2 Introduction . 7
3 Tutorial Introduction to fswatch . 9
4 Invoking fswatch . 13

5 Monitors . 29

A GNU Free Documentation License . 37
B Index of Functions . 47

C Index of Programs . 49
D Index of Files . 51
E Index of Command Line Options . 53

Index . 55

iii

Table of Contents

1 Version History . 1
1.1 1.17.0 . 1
1.2 1.16.0 . 1
1.3 1.14.0 . 1
1.4 1.12.0 . 1
1.5 1.11.3 . 1
1.6 1.11.2 . 2
1.7 1.11.1 . 2
1.8 1.11.0 . 2
1.9 1.10.0 . 2
1.10 1.9.3 . 2
1.11 1.9.2 . 2
1.12 1.9.1 . 2
1.13 1.9.0 . 2
1.14 1.8.0 . 3
1.15 1.7.0 . 3
1.16 1.6.0 . 3
1.17 1.5.1 . 3
1.18 1.5.0 . 3
1.19 1.4.7 . 3
1.20 1.4.6 . 3
1.21 1.4.5.3 . 3
1.22 1.4.5.2 . 4
1.23 1.4.5.1 . 4
1.24 1.4.5 . 4
1.25 1.4.4 . 4
1.26 1.4.3.2 . 4
1.27 1.4.3.1 . 4
1.28 1.4.3 . 4
1.29 1.4.2 . 5
1.30 1.4.1.1 . 5
1.31 1.4.1 . 5
1.32 1.4.0 . 5
1.33 1.3.9 . 5
1.34 1.3.8 . 5
1.35 1.3.7 . 5
1.36 1.3.6 . 5
1.37 1.3.5 . 6
1.38 1.3.4 . 6
1.39 1.3.3 . 6
1.40 1.3.2 . 6

iv

2 Introduction . 7
2.1 History and fswatch Authors . 7
2.2 Reporting Bugs and Suggestions . 7

3 Tutorial Introduction to fswatch 9
3.1 Detecting File System Changes . 9
3.2 Observing File System Changes . 10

3.2.1 Event details . 10
3.2.2 Parseability Issues . 10
3.2.3 Numeric Event Flags . 11

3.3 Processing fswatch Output . 11
3.4 Detecting the Boundaries of a Batch of Changes 12
3.5 Receiving a Single Event . 12

4 Invoking fswatch . 13
4.1 Synopsis of fswatch . 13
4.2 The Two Option Styles . 14

4.2.1 Long Options . 14
4.2.2 Short Options . 14

4.3 fswatch Options . 15
4.4 Whitespace and Record Format . 17
4.5 Custom Record Formats . 18

4.5.1 Format Directives . 18
4.5.2 Record Termination . 19
4.5.3 Event Flag Separator . 19
4.5.4 Builtin Formats . 19

4.6 Batch Marker . 19
4.7 Idle events . 20
4.8 Filtering by Path . 20

4.8.1 Specifying Filters . 21
4.8.1.1 Filter File Format . 21

4.8.2 Types of Filters and Order of Execution 21
4.8.3 Filter Modifiers . 22

4.9 Filtering by Event Type . 22
4.10 Latency . 22
4.11 Symbolic Links . 23
4.12 Event Flags . 23

4.12.1 Peculiarities and Pitfalls . 24
4.12.2 Numeric Event Flags . 24

4.13 Choosing a Monitor . 25
4.14 Recursive Scanning . 26

4.14.1 Recursively Watching Directories . 27
4.15 Monitor Tunables . 27

v

5 Monitors . 29
5.1 Available Monitors . 29
5.2 The FSEvents Monitor . 30

5.2.1 Peculiarities . 30
5.2.2 Custom Properties . 30

5.3 The kqueue Monitor . 31
5.3.1 Peculiarities . 31

5.4 The File Events Notification Monitor . 31
5.5 The inotify Monitor . 31

5.5.1 Peculiarities . 31
5.5.1.1 Queue Overflow . 31
5.5.1.2 Duplicate Events . 32

5.6 The Windows monitor . 32
5.6.1 Peculiarities . 32

5.6.1.1 Buffer Overflow . 32
5.6.1.2 Directory Watching . 33
5.6.1.3 Recursivity . 33

5.7 The Poll Monitor . 33
5.7.1 Peculiarities . 33

5.7.1.1 Performance Problems . 33
5.7.1.2 Missing Events and Missing Event Flags 34

5.8 How to Choose a Monitor . 34

Appendix A GNU Free
Documentation License . 37

Appendix B Index of Functions 47

Appendix C Index of Programs 49

Appendix D Index of Files . 51

Appendix E Index of
Command Line Options . 53

Index . 55

1

1 Version History

1.1 1.17.0

• Refactor code to replace usages of deprecated func-
tion FSEventStreamScheduleWithRunLoop with
FSEventStreamSetDispatchQueue.

• Issue 230: Improve responsiveness on macos: add support for
kFSEventStreamCreateFlagNoDefer.

• Issue 249: Man page still mentions fswatch-run.

• Issue 255: Implement event bubbling.

• Issue 256: -1 flag prints the file changed multiple times before exiting.

1.2 1.16.0

• Update FSEvents flags and add support to macOS 10.10+ features.

• Issue 226: Add FreeBSD installation instructions.

• Issue 243: PlatformSpecific instead of Updated on Darwin 19.4.

• Issue 248: Update fswatch.7.in to add the Event Types section to the
man page.

• Issue 257: Update FreeBSD installation instructions.

• Issue 260: Fix memory leak.

• Issue 269: do not use global variable in function, pass parameter instead.

• Issue 270: using both AC CONFIG MACRO DIR and
AC CONFIG MACRO DIRS is deprecated in autoconf-2.71

• Issue 272: Send AttributeModified on touch when using the FSevents
monitor.

1.3 1.14.0

• Issue 218: fswatch v1.13 ignores the --monitor parameter and always
uses the default monitor.

1.4 1.12.0

• Fix issue 178: Migrate usages of POSIX regular expressions
(<regex.h>) to the C++11 regex library (<regex>).

• Fix issue 191: Wrong error message is printed when inotify event queue
overflows.

1.5 1.11.3

• Fix issue 192: Make the build reproducible.

2 fswatch 1.17.0

1.6 1.11.2

• Fix issue 182: Generate a single message catalog for both fswatch and
libfswatch.

1.7 1.11.1

• Fix issue 182: Remove mandatory dependency to git.

1.8 1.11.0

• Fix issue 174: Update the --event option to accept a numeric event
mask.

• Fix issue 181: Make gettext an optional dependency.

1.9 1.10.0

• Fix issue 60: Allow excluding file patterns by passing a file.

• Fix issue 119: Merge fswatch and libfswatch Autotools projects into
one.

• Fix issue 141: Add Docker files for Linux distributions used for testing.

• Add target to build fswatch on Alpine Linux and Debian.

1.10 1.9.3

• Fix issue 120: C binding is pulling in C++ headers and using C++ con-
structs.

• Fix issue 128: C binding is pulling in C++ headers.

1.11 1.9.2

• Fix issue 118: v. 1.9.0 breaks the -1 option.

• libfswatch API version set to 8:0:2.

1.12 1.9.1

• libfswatch API version set to 7:0:1.

1.13 1.9.0

• Fix issue 114: fswatch does not track newly created directories recur-
sively when using the inotify monitor.

• Add the possibility of scheduling a periodic event.

Chapter 1: Version History 3

1.14 1.8.0

• Add preemptive monitor stop support.

1.15 1.7.0

• Fix issue 35: Support Solaris/Illumos File Events Notification API.

• Fix issue 98: Add (-d, --directories) option to request the monitor
to watch directories only during a recursive scan.

• Fix issue 99: A monitor using the File Events Notification API of the
Solaris/Illumos kernel has been added.

• Fix issue 101: Add flag to watch file accesses.

1.16 1.6.0

• fswatch can be built on Microsoft Windows using Cygwin.

• A monitor for Microsoft Windows has been added.

• fswatch can survive monitor overflows and notify them as a specially
crafted change event (of type Overflow) if invoked with the --allow-
overflow option.

1.17 1.5.1

• fswatch-run scripts have been removed.

• As a consequence of the fswatch-run removal, dependency on at least
one supported shell (Zsh and Bash) has been removed.

1.18 1.5.0

• Added the --event option to allow filtering by event type.

1.19 1.4.7

• Fix bug in exclusion filter ordering (PR 75).

• README.md improvements.

• Documentation improvements.

1.20 1.4.6

• Fix issue 74: Assertion failed on fsw_destroy_session.

1.21 1.4.5.3

• Fix issue 67: 100% CPU usage while using libfswatch. This issue only
affects the inotify monitor.

4 fswatch 1.17.0

1.22 1.4.5.2

• Fix issue 66: Exclude items with poll_monitor not considered.

1.23 1.4.5.1

• Do not distribute wrapper scripts for shells which are not installed (the
FreeBSD port system checks shebangs and complains).

1.24 1.4.5

• Add custom record formats.

1.25 1.4.4

• Localize fswatch and libfswatch using GNU gettext.

• Add Spanish (es) localization.

• Add Italian (it) localization.

1.26 1.4.3.2

• Fix Makefile.am because of broken link when DESTDIR installs are
performed.

1.27 1.4.3.1

• Fix bug in fswatch-run wrapper script for Zsh which caused last argu-
ment not to be split when passed to xargs.

1.28 1.4.3

• Add batch marker feature to delimit the boundaries of a batch of events.

• Add Texinfo documentation.

• libfswatch API is now versioned.

• Improved Autoconf checks.

• The inotify monitor now waits for events and honours the latency set-
tings.

• Automaticaly generate the ChangeLog file using Git.

• Update autogen.sh to honour some commonly used environment vari-
ables.

Chapter 1: Version History 5

1.29 1.4.2

• The inotify monitor now provides the same functionality provided by all
the other monitors. Recursive directory monitoring is now implemented.

• Version and revision is now determined dynamically using Git by ancil-
lary scripts invoked by the GNU Build System.

1.30 1.4.1.1

• fswatch does not compile on macOS < 10.9 because some required
C++11 classes are not supported by its C++ runtime.

1.31 1.4.1

• fswatch does not compile on macOS < 10.9 because some required
C++11 classes are not supported by its C++ runtime.

1.32 1.4.0

• The libfswatch library has been added with bindings for C and C++.

• fswatch let users specify the monitor to use by name.

1.33 1.3.9

• Fix Issue 23: Add --include option.

• Fix Issue 25: Add --include option.

• Paths can be included using -i/--include and providing a set of regular
expressions.

1.34 1.3.8

• Fix Issue 34: Diagnostic messages were output by the inotify monitor
even if fswatch was not run in verbose mode.

1.35 1.3.7

• Fix Issue 32: Problems building fswatch 1.3.6 on Mac v. 10.8.5.

• Remove usages of C++11 initializer lists so that fswatch builds with
older compilers.

1.36 1.3.6

• Fix Issue 26: fswatch-run cannot run a command with arguments.

• fswatch-run scripts are provided for Zsh and Bash.

6 fswatch 1.17.0

• System is scanned during installation to check for Zsh and Bash avail-
ability. Path of found shells is substituted in the corresponding scripts,
otherwise the default /bin/shell is used.

• If a supported shell is found, the fswatch-run symbolic link is created
in the installation directory to the corresponding script. The lookup
order of the shells is:

• Zsh.

• Bash.

1.37 1.3.5

• Fix Issue 27: Redirect usage text to standard error unless -h or --help.

• Fix bug to write usage to standard error when invalid arguments are
specified.

1.38 1.3.4

• Fix bug in fswatch-run script to allow arguments to be passed to the
command to run.

1.39 1.3.3

• Add -o/--one-per-batch option to print a single message with the
number of change events in the current batch.

• Add fswatch-run shell script to mimic the behaviour of earlier fswatch
versions and launch the specified command when change events are
received.

1.40 1.3.2

• fswatch has been merged with fsw.

7

2 Introduction

fswatch is a file change monitor that receives notifications when the contents
of the specified files or directories are modified. fswatch interacts with the
operating system using a monitor. Currently, the following kinds of monitors
are available:

• A monitor based on the File System Events API (FSEvents) of Apple
macOS.

• A monitor based on kqueue, an event notification interface introduced
in FreeBSD 4.1 and supported on most *BSD systems (including Apple
macOS).

• Amonitor based on the File Events Notification API of the Solaris kernel
and its derivatives, such as Illumos.

• A monitor based on inotify, a Linux kernel subsystem that reports file
system changes to applications.

• A monitor based on the Microsoft Windows’ ReadDirectoryChangesW
function.

• Amonitor which periodically stats the file system, saves file modification
times in memory and manually calculates file system changes, which can
work on any operating system where the stat() function can be used.

fswatch should build and work correctly on any system shipping either
of the aforementioned APIs.

2.1 History and fswatch Authors
Alan Dipert wrote the first implementation of fswatch in 2009. This ver-
sion ran exclusively on Apple macOS and relied on the FSEvents API to get
change events from the OS.

At the end of 2013 Enrico M. Crisostomo wrote fsw aiming at pro-
viding not only a drop-in replacement for fswatch, but also a tool portable
across as many operating systems as possible. Besides adding support to
other operating systems, fsw introduced new features such as inclusion and
exclusion filters and customizable output formats.

In April 2014 Alan and Enrico, in the best interest of users of either
fswatch and fsw, agreed on merging the two programs together. At the same
time, Enrico was taking over fswatch as a maintainer. As a consequence,
development of fswatch has continued on its main repository while the fsw
repository has been frozen.

2.2 Reporting Bugs and Suggestions
If you find problems or have suggestions about this program or this man-
ual, please report them as new issues in the official GitHub repository of
fswatch at https://github.com/emcrisostomo/fswatch. Please, read

https://github.com/emcrisostomo/fswatch

8 fswatch 1.17.0

the CONTRIBUTING.md file for detailed instructions on how to contribute to
fswatch.

9

3 Tutorial Introduction to fswatch

This chapter is a tutorial walk-through on the most common use cases where
fswatch is useful:

• Detecting file system changes.

• Observing file system changes.

• Processing fswatch output.

3.1 Detecting File System Changes
A common use case is detecting file system changes in a set of file system
objects1 where the details of a change are irrelevant. This mode of operation
is called bulk mode and fswatch will only dump a single event record per
batch2 containing the number of affected file system objects. No other details
are avaible in the event record.

The most common application of this mode of operation is performing a
bulk action on all the observed file system objects, such as a synchronization
with rsync, which will serve us as an example. In this case, a change event
triggers the execution of a synchronization script, no matter the event type
kind nor the object the event affects.

To run fswatch in batch mode, the (-o, --one-per-batch) must be
used:

$ fswatch -o path ...
2
10

The (-l, --latency) option can be used to set the latency according to the
requirements:

$ fswatch -o -l 5 path ...
4
7

This way, you can respond to change events in a way which is (or can easily
be) path-independent (because you are not receiving any event detail) and
you prefer to ‘bubble’ events together to reduce the overhead of the command
being executed.

In bulk mode the output of fswatch is guaranteed to have the following
structure:

number\n

where ‘number’ is an integer value and ‘\n’ is the new line character. A line
with this structure is very easy to read with either xargs or the read builtin:

$ fswatch -o path | while read num ; \

1 In the context of this manual (unless specified otherwise), file system object refers
undistinctively to files, directories and symbolic links.

2 A batch is an iteration of fswatch scanning logic, whose frequency is ν = l−1, where
l is the latency.

10 fswatch 1.17.0

do \
... \

done

In many scripts of this kind, the num variable can even be ignored.

3.2 Observing File System Changes
Besides the batch mode, fswatch provides a main mode providing the full
change events details and the file system objects they refer to. The main
mode is fswatch’s default mode of operation and needs no specific flags to
be activated.

In this mode, fswatch outputs change events to the standard output.
By default, only the affected file name is printed and the change event record
structure has the following structure:

path\n

where path is the full path of the changed file system object.

fswatch lets users customize the format of the event record and the
information it includes. For example:

• The event timestamp can be added.

• The event mask can be added in either textual or numerical form.

• The event record can be defined using a printf-like format string.

3.2.1 Event details

Beside the full path of the change object, details on the kind of change event
can be obtained using the (-x, --event-flags) option:

$ fswatch -xr /path/to/observe
/path/to/observe Created Renamed OwnerModified IsFile
...

In this case, a space-separated list of change flags are printed after the path
of the changed object. The record structure is thus:

/absolute-path flag (flag)*

where ‘flag’ is an event flag. At least one event flag is always present, and
additional ones are ‘bubbled’ into the same record and separated by space.
For more information on event flags see [Event Flags], page 23.

3.2.2 Parseability Issues

The default record format is intuitive and human-readable. However, since
a Unix file name may contain any character but the path separator ‘/’ and
the ‘NUL’3 character, it suffers from two classes of parseability issues:

3 Depending on the file system being used, other restrictions may apply. However,
for file system portability reasons, you should consider ‘NUL’ as the only forbidden
character.

Chapter 3: Tutorial Introduction to fswatch 11

• The default choice of using ‘\n’ as record separator may lead to un-
expected results because a file name can legally contain ‘\n’. For this
reason, along the line of what other tools such as find and xargs al-
ready do, the ‘NUL’ character (‘\0’) can alternatively be used:

/absolute-path(flag)*\0

• Since a file name may contain spaces, this record structure is not unam-
bigually parseable if more than one event flag is present: in this case,
any subset [0, x], x < n − 1 of the n event flags may be part or the file
name and hence any parse result would be indeterminate.

Both issues can be solved using a custom record format (see [Custom
Record Formats], page 18).

3.2.3 Numeric Event Flags

Instead of using user-friendly event flag names, as seen in the previous sec-
tion, numeric event flags can be used instead. Currently, the real advantage
this method offers, despite possibly cleaner flag-decoding logic, is the avail-
ability of a non-ambigous event record representation.

To instruct fswatch to print numeric event flags, the (-n, --numeric)
option must be used:

$ fswatch -xnr /path/to/observe
/absolute-path 2058

The numeric event flag value is the bitwise OR of the individual event flag
values, that are powers of 2. In the previous example, the flag 2058 is
decomposed in powers of 2 as 2058 = 2048 + 8 + 2 = 211 + 23 + 2, that is,
the first, the third and the eleventh event flags.

3.3 Processing fswatch Output
Very often you wish to not only receive an event, but also react to it. The
simplest way to do it is piping the output of fswatch to another process.
Since in Unix and Unix-like file system file names may potentially contain
any character but ‘NUL’ (‘\0’) and the path separator (‘/’), fswatch has a
specific mode of operation when its output must be piped to another process.
When the (-0, --print0) option is used, fswatch will use the ‘NUL’ character
as record separator, thus allowing any other character to appear in a path.
This is important because many commands and shell builtins (such as read)
split lines using the newline character (‘\n’) and words using the characters
in $IFS, which by default contains characters which may be present in a file
name, resulting in a wrong event path being received and processed.

The simplest way to pipe fswatch’s output to another program is using
xargs:

$ fswatch -0 (opts)* (paths)+ | xargs -0 -n 1 -I {} command

The command in this example does the following:

• fswatch -0 will split records using the ‘NUL’ character.

12 fswatch 1.17.0

• xargs -0 will split records using the ‘NUL’ character. This is required
to correctly match impedance with fswatch.

• xargs -n 1 will invoke command every record. If you want to do it every
x records, then use xargs -n x.

• xargs -I {} will substitute occurrences of {} in command with the
parsed argument. If the command you are running does not need the
event path name, just delete this option. If you prefer using another
replacement string, substitute {} with another string of your choice.

3.4 Detecting the Boundaries of a Batch of
Changes

If a process or script is piped to fswatch output, sometimes it would be
desirable to detect the ‘boundaries’ of a batch of changes. This way, the
process receiving the stream of changes would rely on the timings imposed
by the latency settings of fswatch to start a phase of events processing after
a phase or events gathering. The --batch-marker option can be used to
accomplish this task:

$ fswatch --batch-marker -r ~
/home/fswatch/.zsh_history.LOCK
NoOp
/home/fswatch/.zsh_history.new
/home/fswatch/.zsh_history
/home/fswatch/.zsh_history.LOCK
NoOp

In this example, the ‘NoOp’ records mark the end of the 1 second batches of
events output by fswatch. The batch marker can be customized. For more
information [Batch Marker], page 19.

3.5 Receiving a Single Event
Another feature of fswatch is the possibility of receiving a single event and
exit. This is most useful when existing scripts processing events include the
restart logic of fswatch. This use case is implemented by the -1, --one-
event option:

$ fswatch -1 /path/to/watch
/path/to/watch/child0
/path/to/watch/child1
...
$

13

4 Invoking fswatch

This chapter is about how fswatch is invoked. There are many options and
two styles for writing them.

4.1 Synopsis of fswatch
fswatch is invoked using the following syntax:

fswatch (options)* (paths)+

fswatch interprets file names as being relative to the working directory and
canonicalizes them using realpath.

If a directory is used as an argument, the directory object is watched
and, optionally and depending on the monitor being used, the directory is
scanned recursively and all its children are watched as well.

Depending on the monitor being used, recursively scanning huge direc-
tory hierarchies or big set of files may be resource consuming, CPU intensive
or even impossible. The characteristics of the available monitors in a sys-
tem should be assessed in order to choose the best monitor according to the
specific needs.

Besides successful exits1, indicated with the exit code 0, fswatch may
exit with an error. fswatch will try to print a diagnostic description on
stderr when an unexpected error occurs.

The documented2 exit codes of fswatch are the following:

0 FSW_EXIT_OK: No error occurred.

1 FSW_EXIT_UNK_OPT: An unknown option was input.

2 FSW_EXIT_USAGE: Help message was requested.

3 FSW_EXIT_LATENCY: Invalid latency.

4 FSW_EXIT_STREAM: A stream related problem occurred.

5 FSW_EXIT_ERROR: An unkown error occurred.

6 FSW_EXIT_ENFILE: A file could not be opened.

7 FSW_EXIT_OPT: Unused.

8 FSW_EXIT_MONITOR_NAME: The specified monitor does not exist.

9 FSW_EXIT_FORMAT: The specified monitor is invalid.

1 Depending on the monitor and options being used, fswatch may not exit unless
stopped with a signal such as TERM or QUIT.

2 Exit codes are documented in c/error.h of libfswatch.

14 fswatch 1.17.0

4.2 The Two Option Styles
fswatch implements two option styles which are common in Unix and Unix-
like operating systems and GNU software: short and long options. The
biggest difference between short and long options are argument placing (for
options taking one).

Whether long options are available in a system depend on the availabil-
ity of the getopt_long function at build time. For this reason, users should
familiarise themselves with short options and use them when possible and
do not rely on long options to be available on any fswatch installation.

4.2.1 Long Options

In systems where the getopt_long function is available, each short option
has a corresponding long option with a mnemonic name starting with two
dashes (e.g.: --version). Long options are meant to be easy to remember
and to provide hints about what a command is going to perform. The
following command:

$ fswatch --event-flags --numeric --recursive ~

is clearer than:

$ fswatch -xnr ~

If a long option takes an argument, it can be specified in two ways,
depending on whether the argument is optional or mandatory:

• Separating the argument from the option name with an equal sign, if
the argument is of either kind.

$ fswatch --latency=5 ~

• Separating the argument from the option name with any amount of
white space, if the argument is mandatory.

$ fswatch --latency 5 ~

4.2.2 Short Options

Most options have a short form consisting of a dash followed by a single
character, such as -l (which is equivalent to --latency). When available,
a short form is interchangeable with the long one.

If a short option takes an argument, it can be specified in two ways:

• Separating the argument from the option name with any amount of
white space:

$ fswatch -l 5 ~

• Joining the argument to the option name:

$ fswatch -l5 ~

Short options can be stuck together provided all the options but the last
one take no argument, in which case it can be specified as described above.
The command:

$ fswatch -xnrl 5 ~

Chapter 4: Invoking fswatch 15

is equivalent to:

$ fswatch -x -n -r -l 5 ~

where ‘5’ is the argument of -l.

4.3 fswatch Options
In the following table you can find the list, in alphabetical order, of fswatch’s
options.

--access
-a

Monitor file access. This functionality is supported by selected
monitors only.

--allow-overflow
Sets the allow overflow flag of the monitor. When this flag is set,
monitor buffer overflows are reported as change events of type
fsw_event_flag::Overflow.

--batch-marker
Print a marker at the end of every batch.

--directories
-d

Request the monitor to watch directories only during a recur-
sive scan. This feature helps reducing the number of open file
descriptors if a generic change event for a directory is acceptable
instead of events on directory children.

--event Filter events by type using the specified event name or numeric
mask (see [Filtering by Event Type], page 22). Specified event
names are included in the output. Multiple event types can be
specified using this option multiple times.

--event-flags
-x

Print the event flags.

--event-flag-separator
Use the specified string as event flag separator.

--exclude
-e

Exclude paths matching regex.

--extended
-E

Use extended regular expressions.

16 fswatch 1.17.0

--filter-from
Load filters from the specified file.

--fire-idle-events
Fire idle events.

--follow-links
-L Symbolic links are followed instead of being watched as file sys-

tem objects.

--format

Use the specified record format.

--format-time
-f

Print the event time using the specified format.

--help
-h

Show the help message.

--include
-i

Include paths matching regex.

--insensitive
-I

Use case insensitive regular expressions.

--latency
-l

Set the latency using the specified value.

--list-monitors
-M

List the available monitors.

--monitor
-m

Use the specified monitor.

--monitor-property
Pass the specified property to the monitor (see [Monitor Tun-
ables], page 27).

--no-defer
Sets the kFSEventStreamCreateFlagNoDefer on the FSEvents
monitor, which makes the monitor more responsive. This flag
is more appropriate for interactive session, while the default be-
haviour is more appropriate for background, daemon or batch
processing apps.

Chapter 4: Invoking fswatch 17

--numeric
-n

Print a numeric event mask.

--one-per-batch
-o

Print a single message with the number of change events in the
current batch.

--one-event
-1

Exit fswatch after the first set of events is received.

--print0
-0

Use the ASCII ‘NUL’ (‘\0’) as record separator.

--recursive
-r

Recurse subdirectories.

--timestamp
-t

Print the event timestamp.

--utc-time
-u

Print the event time as UTC time.

--verbose
-v

Print verbose output.

--version
Print the version of fswatch and exit.

4.4 Whitespace and Record Format
As seen in [Observing File System Changes], page 10, file names may contain
characters such as ‘\n’ which are commonly used as line separators. Many
commonly used Unix commands and shell builtins use characters in the $IFS
environment variable3 as separators to split words. By default, $IFS contains
the characters ‘ ’ (SPC), ‘\t’, ‘\n’ and ‘\0’ (‘NUL’).

Therefore, if a file contains such a separator character (and all but ‘NUL’
are legal), then a parsing ambiguity may arise when using certain record
formats such as:

path(flag)+

3 IFS (Internal Field Separators).

18 fswatch 1.17.0

In this case, for example, if n > 1 flags are present in the record, and hence
more than one ‘ ’ (SPC) is present, then it is not known whether any subset
containing a number x of consecutive flags (x < n) is part of the path or
not.

The same reasoning applies when splitting lines instead of words: since
‘\n’ may be a legal file name character, then it is now known whether ‘\n’
indicates a record’s end or simply is part of a file name.

For this reason, in order to avoid parsing ambiguity, this options in-
structs fswatch to use ASCII ‘NUL’ as record separator.

Warning: The use of the --print0 solves the line splitting ambigu-
ity but not the word splitting ambiguity when using textual event
flags. A solution to this problem is provided by custom record for-
mats (see [Custom Record Formats], page 18).

Another way to get an unambiguous record format is using numeric
event flags (see [Numeric Event Flags], page 24).

4.5 Custom Record Formats
To solve the problem of line splitting ambiguities and to provide users the
possibilities of tailoring the record format to their needs, fswatch allows
users to specify the event record format using the --format option.

This options requires a printf-like4 format string ordinary text contain-
ing zero or more directives. Characters not belonging to a format directive
are copied unchanged to the output, while directives are interpreted and
replaced with the result of their evaluation.

4.5.1 Format Directives

Directives start with ‘%’ which is always treated as a special character: ei-
ther it marks the beginning of a directive or it is interpreted as an escape
character5.

The available directives are:

%% Inserts the ‘%’ character.

%0 Inserts an ASCII ‘NUL’ (‘0’) character.

%n Inserts a newline character.

%f Inserts the list of event flags, separated by default by the space
character (‘ ’) or by the separator specified with the --event-
flag-separator option (see [Event Flag Separator], page 19).

%p Inserts the path.

%t Inserts the timestamp, formatted with strftime using the for-
mat optionally specified with the --format-time option.

4 Although the available directive are much less than what printf offers.
5 Which is the same as considering escaped characters the result of a directive.

Chapter 4: Invoking fswatch 19

4.5.2 Record Termination

Each record is terminated by either a newline character (‘\n’) or an ASCII
‘NUL’ character when -0 is specified. The record termination character has
the following characteristics:

• It is not part of the format string.

• Its value can only be chosen between ‘\n’ and ‘NUL’ (‘\0’).

• It cannot be suppressed.

4.5.3 Event Flag Separator

When the list of event flags is printed, textual items are separated by default
by spaces (‘ ’). The user can specify an alternate event flag separator using
the --event-flag-separator and passing the desired separator string as
argument.

For instance, if the user wants event flags to be separated by a comma,
the following command can be used:

$ fswatch --event-flag-separator=, -x (options)* (paths)+

4.5.4 Builtin Formats

The format used by fswatch when a custom format is not specified is de-
termined as follows6:

• ‘%t ’ is added at the beginning of the format string if -t is used.

• ‘%p’ is always appended to the format string.

• ‘ %f’ is added at the end of the format string if -x is used.

4.6 Batch Marker
Since fswatch typically outputs an endless event stream, processing parties
parsing its output may be interested in ‘batch event processing’: that is,
processing batches of events instead of endlessly processing events one by
one.

To support this use case, fswatch provides the --batch-marker option;
when specified, fswatch will output a customizable ‘batch marker record’
processing parties can use as batch delimiters. Batch demarcation is made
naturally using the monitor’s processing loop and its latency setting: every
time the monitor loops (typically when latency is elapsed), then a batch
marker is printed as final record, as shown in the next example:

$ fswatch --batch-marker -r ~
/home/fswatch/.zsh_history.LOCK
NoOp
/home/fswatch/.zsh_history.new
/home/fswatch/.zsh_history

6 In the following example, the record termination character is not shown.

20 fswatch 1.17.0

/home/fswatch/.zsh_history.LOCK
NoOp

By default, the batch marker takes the form of a single-line record:

NoOp(\n | \0)

terminated with either ‘\n’ or ‘NUL’ (‘\0’) depending on other fswatch set-
tings. However, the user can customize it by providing the desired marker
string as optional argument to --batch-marker:

% ./fswatch --batch-marker="*** BATCH END ***" -r ~
/home/fswatch/.zsh_history.LOCK
*** BATCH END ***

4.7 Idle events
An idle event is a special event type that can optionally be emitted by
fswatch if no change events were collected in a period of time whose average
length is equal to the monitor latency (see [Latency], page 22). Idle events
come in handy when an observer wants to perform an operation every time
a change is detected or after a specified amount of time even if no changes
were detected.

Idle events were introduced in version 1.9.0 and are available only when
fswatch is built on a platform that supports C++11 threads (std::thread)
and can be enabled using the --fire-idle-events option.

An idle event has got the following characteristics:

• It has an empty path.

• It is of type NoOp.

4.8 Filtering by Path
Filters are regular expression which are evaluated against the monitored ob-
ject path to determine whether a path must be accepted or rejected. Some-
times, the exclusion of a path may result in the exclusion of an object from
the list of monitored objects, while other times a path must be evaluated
only when an event is detected and in this case the corresponding object
cannot be removed from the monitored object list in advance7.

Event though event filtering is commonly performed when processing
fswatch output, the possibility of filtering paths ‘at the source’ provides not
only a greater amount of flexbility, but also:

• Improved performance, since fswatch will only monitor matching ob-
jects8.

7 This behaviour is monitor-specific.
8 Whether an object whose path is matched by an exclusion filter is monitored or not

is a monitor-specific implementation detail.

Chapter 4: Invoking fswatch 21

• Less resource pressure, especially when resource-intensive monitors are
used. This is especially important when using monitors that rely on the
availability of open file descriptors for any monitored object.

• Simpler processing logic, since part of the path filtering logic is per-
formed by fswatch.

Filters are implemented using the C++11 <regex> library. This feature
is now required to successfully build libfswatch and fswatch.

4.8.1 Specifying Filters

Path filters can be specified in two ways:

• By using the --include and --exclude options and the modifier op-
tions --extended and --insensitive.

• By loading them from a file using the --from-file option.

4.8.1.1 Filter File Format

The filter file is made up of records separated by a new line charactere, or
formally a ASCII ‘LF’ (line feed) character. The structure of the record is
the following:

type pattern

where ‘type’ indicated the filter type and ‘pattern’ is the filter regular
expression. ‘type’ may contain the following characters:

• ‘+’ or ‘-’, to indicate respectively whether the filter is an inclusion or an
exclusion filter.

• ‘e’ to use an extended regular expression.

• ‘i’ to use a case insensitive regular expression.

The following filter file instructs fswatch to ignore all files except those
ending in ‘.cpp’, ignoring case.

- .*
+i \.cpp$

4.8.2 Types of Filters and Order of Execution

Two types of filters are available:

• Inclusion filters.

• Exclusion filters.

As their name indicates, they are used to include and exclude paths
from the monitored object list and from resulting events. fswatch processes
filters this way:

• If a path matches an including filter, the path is accepted no matter
any other filter.

• If a path matches an excluding filter, the path is rejected.

• If a path matches no filters, the path is accepted.

22 fswatch 1.17.0

Said another way:

• All paths are accepted by default, unless an exclusion filter says other-
wise.

• Inclusion filters may override any other exclusion filter.

• The order in the definition of filters in the command line has no effect.

4.8.3 Filter Modifiers

Filters are regular expression executed using the regcomp function (http://
pubs.opengroup.org/onlinepubs/009695399/functions/regcomp.
html) which is able to interpret case-sensitive and case-insensitive basic
and extended regular expressions as described in Base Definitions volume
of IEEE Std 1003.1-2001, Chapter 9, Regular Expressions (http://pubs.
opengroup.org/onlinepubs/009695399/functions/regcomp.html).

The (--insensitive, -I) option instructs fswatch to use case insensi-
tive regular expressions. The following example adds an exclusion filter so
that fswatch ignores any file system object whose name ends with .log, no
matter the case.

$ fswatch -Ie ".*\.log$" ~

The (--extended, -E) option instructs fswatch to use extended regular
expressions, such as:

$ fswatch -Ee "xl[st]+" ~

Treating the characteristics and the difference between different kinds
of regular expressions is out of scope in this manual.

4.9 Filtering by Event Type
Events can be filtered by event type passing fswatch a list of event type
names or masks to accept using the --event option:

$ fswatch -x --event Created --event Removed ~
$ fswatch -x --event 10 ~

In this example, the mask of the Created event is 2 and the mask of
the Removed event is 8, so the mask of both events is 10.

If no event type filters are specified, fswatch will accept events of any
type; on the other hand, as soon as a filter is specified, only events with a
matching type will be accepted.

4.10 Latency
The latency l, expressed in seconds, is the amount of time that passes be-
tween the moment fswatch outputs a set of detected changes and the next.
What happens during the time in-between is a monitor-specific implemen-
tation detail.

Some APIs, such as macOS’s FSEvents, implement the concept of la-
tency themselves and fswatch appears idle in between. Only when the

http://pubs.opengroup.org/onlinepubs/009695399/functions/regcomp.html
http://pubs.opengroup.org/onlinepubs/009695399/functions/regcomp.html
http://pubs.opengroup.org/onlinepubs/009695399/functions/regcomp.html
http://pubs.opengroup.org/onlinepubs/009695399/functions/regcomp.html
http://pubs.opengroup.org/onlinepubs/009695399/functions/regcomp.html
http://pubs.opengroup.org/onlinepubs/009695399/functions/regcomp.html

Chapter 4: Invoking fswatch 23

specified amount of time passes, change events are received, processed and
written to standard output. Others, such as Linux’s inotify, do not9; in this
case, the inotify monitor waits for events a maximum of l seconds; after that,
the monitor logic loops again, performs house-keeping activities10 and starts
waiting again.

The important thing to keep in mind is that latency and a monitor’s
behaviour are implementation-dependent: check the documentation of the
monitor you are using to get further information about how latency is han-
dled.

4.11 Symbolic Links
Symbolic links are commonly used file system objects and, as it is customary
for file system utilities, fswatch can either follow them and monitor the
linked object11 or monitor the link itself.

4.12 Event Flags
Event flags identify the kind of change a file system object has undergone.
Many of them directly map to common file system operations (such as cre-
ation, deletion, update, etc.), others are less common (such as attribute
modification), and others are monitor and platform specific.

Currently, fswatch maps monitor-specific event flags to ‘global’ event
flags acting as a sort of ‘greatest common denominator’ of all the available
monitor flags. The list of all the available global event flags, defined in
c/cevent.h, is the following:

NoOp Idle event, optionally issued when no changes were detected.

PlatformSpecific
This event maps a platform-specific event that has no corre-
sponding flag.

Created The object has been created.

Updated The object has been updated. The kind of update is monitor-
dependent.

Removed The object has been removed.

Renamed The object has been renamed.

OwnerModified
The object’s owner has changed.

9 inotify publishes changes on a file identified by a descriptor which is read by fswatch.
10 Such as re-scanning objects which did not exist in the previous iteration.
11 When following links, the resolution is recursive: that is, if a link points to another

symbolic link, this link is followed as well, and so on, until an object of a different
kind is found.

24 fswatch 1.17.0

AttributeModified
An object’s attribute has changed.

MovedFrom
The object has moved from this location to a new location of
the same file system.

MovedTo The object has moved from another location in the same file
system into this location.

IsFile The object is a regular file.

IsDir The object is a directory.

IsSymLink
The object is a symbolic link.

Link The object link count has changed.

Overflow The monitor has overflowed.

4.12.1 Peculiarities and Pitfalls

As you can see, the list of event flags contains element whose meaning is
overlapping, at least partially. Link, for instance, may be equivalent to
Create or Removed, depending on the whether the new link count is 1 or 0.
MovedFrom and MovedTo may be equivalent to Create and Removed if the
monitor is unable to discern a move operation has taken place (which is not
always possible, as in the case of the poll monitor).

fswatch is unable to univocally map the specific flags of all the monitors
consistently. Forcefully, the mapping depends on the capabilities of the
monitor which, in turn, depend on the capabilities of the API being used.

For this reason, when processing change events, either the behaviour
of the underlying monitor is known and taken into account, or all the flags
which could possibly be attached at the operation being looked for must be
taken into account.

Warning: As already explained (see [Whitespace and Record For-
mat], page 17), the record format when using event flags in textual
form is ambiguous. For this reason, using numeric event flags (see
[Numeric Event Flags], page 24) or a custom record format (see
[Custom Record Formats], page 18) is recommended when fswatch
output must be processed.

4.12.2 Numeric Event Flags

When using the (--numeric, -n) fswatch will output event flags in numeric
format. A change event record may have multiple event flags and the numeric
value is calculated as the bitwise or of the numeric values of all the flags.
Since the value of an event flag is guaranteed to be unique and to be a
number n in the form n = 2k for a certain integer k, then the numeric value
of a set of event flags is univocally determined.

Chapter 4: Invoking fswatch 25

To check whether a given event flag is present when processing fswatch
output, iti s sufficient to check whether its bit is set to 1 in the event value.
Let’s suppose we want to check whether the event flag whose value is e is
present in a record whose flag numerical value is n. If the result r of

r = e ∧ b

where ∧ is the bitwise and operator, is r > 0, then the flag e is present in n.

The numeric value of all the event flags is the following:

• NoOp: 0

• PlatformSpecific: 1

• Created: 2

• Updated: 4

• Removed: 8

• Renamed: 16

• OwnerModified: 32

• AttributeModified: 64

• MovedFrom: 128

• MovedTo: 256

• IsFile: 512

• IsDir: 1024

• IsSymLink: 2048

• Link: 4096

• Overflow: 8192

4.13 Choosing a Monitor
fswatch is a front-end to multiple monitors, each taking advantage of dif-
ferent monitoring APIs that may be available in a system. When building
fswatch, configure scans the system to check which APIs are available and
builds support for all of them.

A ‘special’ monitor, the poll monitor, manually scans the file system
looking for differences. This is a fallback monitor for situations where other,
more efficient APIs are not available. The poll monitor is available on any
system providing the stat function.

Although fswatch chooses the ‘best’ monitor between the available
ones, a user may wish to use another. A specific monitor can be chosen
using the (--monitor, -m) option. The list of available monitors can be
obtained using the (--list-monitors, -M) option or at the end of the help
message:

$ fswatch --list-monitors
fsevents_monitor

26 fswatch 1.17.0

kqueue_monitor
poll_monitor

$ fswatch --help
[...]
Available monitors in this platform:

fsevents_monitor
kqueue_monitor
poll_monitor

[...]

A monitor can then be chosen by passing the mandatory ‘name’ argument
to the -m option:

$ fswatch -m kqueue_monitor ~

In this case, the ‘kqueue_monitor’ is manually chosen.

4.14 Recursive Scanning
fswatch’s behaviour when scanning a directory may vary on a monitor by
monitor basis. The semantics of the (--recursive, -r) option is: recur-
sively scan subdirectories. However, implementations may silently add ‘if
the monitor does not do so already ’. Since each monitor uses a different
API, its behaviour depends on that of the backing API, and it is monitor-
specific.

• The macOS FSEvents API will always recurse subdirectories when mon-
itoring a directory. In this case, even though -r is not specified, the
monitor will monitor a directory’s children nonetheless and there is no
way to avoid it12.

• The kqueue monitor opens a file descriptor for each watched file. When
-r is used and a directory is watched, fswatch will walk the file system
hierarchy rooted at the directory and will open a file descriptor for each
children to establish a watch on it.

• The File Events Notification monitor does not recurse subdirectories by
default. If a directory is watched, change events for the directory are
received and even if some of them may be triggered by changes to some
of the directory children, no details about their source will be provided.
When the -r option is specified, the monitor will walk the file system
hierarchy rooted at the directory and will watch all of its children.

• The inotify and ReadDirectoryChangesW API returns change events for
first-level children of a directory. When the -r option is not specified,
change events for a watched directory’s children are received. When the
-r is specified, the monitor will walk the file system hierarchy rooted

12 But manually filtering out events based on paths, but fswatch does not do so by
design.

Chapter 4: Invoking fswatch 27

at the watched directory and will establish a watch on every directory
object found.

In general, users should always use the -r option according to its se-
mantics, no matter what the monitor does. The only case when -r is ‘not’
honoured is when a monitor adds information by recursively monitoring chil-
dren even when -r is not specified. Please notice that when this happens,
there may be no performance overhead since the backing API is specifically
designed to behave like this.

The authors think this is not a problem. If you think this behaviour can
be improved, please fill a bug report (see [Reporting Bugs and Suggestions],
page 7).

4.14.1 Recursively Watching Directories

Some monitors such as the kqueue monitor require a file descriptor to be
open for each watched file system object. This imposes a limitation on the
maximum number of files that can be watched by fswatch. Before version
1.7, a user could only overcome this problem by increasing the maximum
number of open file handles on its system.

fswatch 1.7.0 introduced a new option, -d/--directories; when this
option is used with a monitor that supports it, only directory objects will
be watched during recursive scans. When a change occurs on a file, instead
of reporting which file has changed and how, fswatch will report a change
event on the parent directory: this way, the number of required open file
handles decreases at the expense of change event information granularity.

4.15 Monitor Tunables
Some monitors may accept monitor-specific parameters to tune their be-
haviour. To this purpose, fswatch offers a mechanism to pass key-value
pair which are literally passed to the underlying monitor. A key-value pair
(k, v) can be passed to a monitor using the --monitor-property option:

$ fswatch --monitor-property k=v ~

Multiple key-value pairs can be passed by using the --monitor-property
option multiple times.

29

5 Monitors

fswatch is a file system monitoring utility that achieves portability across
multiple platforms by decoupling the front-end (the fswatch itself) from
back-end logic. Back-end logic is encapsulated in multiple, system-specific
monitors, interacting with different monitoring APIs. Since each operating
system may ship a different set of APIs1, each operating system will support
the corresponding set of monitors.

The list of available monitors is decided at build time by the configure
script. Monitors cannot be currently plugged-in but recompiling the
libfswatch library (shipped with fswath). The list of available monitors
can be obtained in the help message:

$ fswatch --help
[...]
Available monitors in this platform:

fsevents_monitor
kqueue_monitor
poll_monitor

[...]

5.1 Available Monitors
Currently, the available monitors are:

• The FSEvents monitor, a monitor based on the File System Events API
of Apple macOS (see [The FSEvents Monitor], page 30).

• The kqueue monitor, a monitor based on kqueue, an event notification
interface introduced in FreeBSD 4.1 and supported on most *BSD sys-
tems (including macOS) (see [The kqueue Monitor], page 31).

• The File Events Notification monitor, a monitor based on the File
Events Notification API of the Solaris/Illumos kernel (see [The File
Events Notification Monitor], page 31).

• The inotify monitor, a Linux kernel subsystem that reports file system
changes to applications (see [The inotify Monitor], page 31).

• The Windows monitor, a monitor that uses the Microsoft Win-
dows’ ReadDirectoryChangesW function and reads change events
asynchronously.

• The poll monitor, a monitor that periodically stats the file system, saves
file modification times in memory and manually calculates file system
changes, which can work on any operating system where stat can be
used (see [The Poll Monitor], page 33).

1 In fact, only macOS supports more than one such API: BSD’s kqueue and FSEvents.

30 fswatch 1.17.0

Each monitor has its own strengths, weakness and peculiarities. Al-
though fswatch strives to provide a uniform experience no matter which
monitor is used, it is still important for users to know which monitor they
are using and to be aware of existing bugs, limitations, corner cases or patho-
logical behaviour.

5.2 The FSEvents Monitor
The FSEvents monitor, available only on Apple macOS, has no known lim-
itations and scales very well with the number of files being observed. In
fact, I observed no performance degradation when testing fswatch observ-
ing changes on a filesystem of 500 GB over long periods of time. This is the
default monitor on Apple macOS.

5.2.1 Peculiarities

The (--recursive, -r) and (--directories, -d) options have no effect
when used with the FSEvents monitor since the FSEvents API already mon-
itors a directory’s children by default. There is no overhead nor resource-
consumption issue with this behaviour, but users processing the output must
be aware that for each directory multiple events may be generated by its chil-
dren.

5.2.2 Custom Properties

darwin.eventStream.noDefer
Enable the kFSEventStreamCreateFlagNoDefer flag in the
event stream.

If you specify this flag and more than latency seconds have
elapsed since the last event, your app will receive the event im-
mediately. The delivery of the event resets the latency timer and
any further events will be delivered after latency seconds have
elapsed. This flag is useful for apps that are interactive and want
to react immediately to changes but avoid getting swamped by
notifications when changes are occurring in rapid succession. If
you do not specify this flag, then when an event occurs after a
period of no events, the latency timer is started. Any events
that occur during the next latency seconds will be delivered as
one group (including that first event). The delivery of the group
of events resets the latency timer and any further events will be
delivered after latency seconds. This is the default behavior and
is more appropriate for background, daemon or batch processing
apps.

Chapter 5: Monitors 31

5.3 The kqueue Monitor
The kqueue monitor, available on any *BSD system featuring the kevent
function, is very similar in principle to other similar APIs (such as FSEvents
and inotify) but has important drawback and limitations.

5.3.1 Peculiarities

The kqueue monitor requires a file descriptor to be opened for every file being
watched. As a result, this monitor scales badly with the number of files being
observed and may begin to misbehave as soon as the fswatch process runs
out of file descriptors. In this case, fswatch dumps one error on standard
error for every file that cannot be opened so that users are notified and
can take action, including terminating the fswatch session. Beware that on
some systems the maximum number of file descriptors that can be opened by
a process is set to a very low value (values as low as 256 are not uncommon),
even if the operating system may allow a much larger value.

If you are running out of file descriptors when using this monitor and
you cannot reduce the number of observed items, either:

• Consider raising the number of maximum open file descriptors (check
your OS’ documentation).

• Consider using the (--directories, -d) option.

• Consider using another monitor.

5.4 The File Events Notification Monitor
The File Events Notification monitor is backed by the File Events Noti-
fication API of the Solaris/Illumos kernel. This monitor is very efficient,
it suffers from no known resource-exhaustion problems and it scales very
well with the number of objects being watched. This monitor is the default
monitor on systems running a Solaris or Illumos kernel providing this API.

5.5 The inotify Monitor
The inotify monitor is backed by the inotify API and the inotify_* set of
functions, introduced on Linux since kernel 2.6.13. Similarly to the FSEvents
API, inotify is very efficient, it suffers from no known resource-exhaustion
problems and it scales very well with the number of objects being watched.
This monitor is the default monitor on systems running inotify-enabled Linux
kernels.

5.5.1 Peculiarities

5.5.1.1 Queue Overflow

The inotify monitor may suffer a queue overflow if events are generated faster
than they are read from the queue. In any case, the application is guaranteed
to receive an overflow notification which can be handled to gracefully recover.

32 fswatch 1.17.0

By default, the fswatch process is terminated after the notification is
sent by throwing an exception. Using the --allow-overflow option makes
fswatch emit a change event of type Overflow without exiting.

5.5.1.2 Duplicate Events

The inotify API sends events for the direct child elements of a watched
directory and it scales pretty well with the number of watched items. For
this reason, depending on the number of files to watch, it may sometimes
be preferable to non-recursively watch a common parent directory and filter
received events rather than adding a huge number of file watches. If recursive
watches are used, then duplicate change events will be received:

• One generated by the parent directory of the file that has changed.

• One generated by the file that has changed.

5.6 The Windows monitor
The Windows monitor uses the Windows’ ReadDirectoryChangesW function
for each watched path and asynchronously waits for change events using
overlapped I/O. The Windows monitor is the default choice on Windows
because it is the best performing monitor on that platform and it is affected
by virtually no limitations.

5.6.1 Peculiarities

5.6.1.1 Buffer Overflow

The Windows monitor may suffer a buffer overflow if events are generated
faster than they can be stored in the buffer allocated by the operating system
when ReadDirectoryChangesW is first called on a watched path. Once the
buffer has been created, it is never resized and will live until the file handle
events are listened upon is closed.

Another source of overflow is the size of the buffer passed to
ReadDirectoryChangesW by its caller. Unless the one created by
Windows, this buffer’s size can be tuned by the user. The custom
windows.ReadDirectoryChangesW.buffer.size property can be used to
programmatically set the size of the buffer (in bytes) when fswatch is
invoked, as shown in the following example where a 4 kilobytes buffer is
used:

$ fswatch --monitor-property \
windows.ReadDirectoryChangesW.buffer.size=4096 \
~

By default, the fswatch process is terminated after the notification is
sent by throwing an exception. Using the --allow-overflow option makes
fswatch emit a change event of type Overflow without exiting.

Chapter 5: Monitors 33

5.6.1.2 Directory Watching

The Windows API lets user watch directory, not files. fswatch currently
passes path arguments to the underlying monitor as they are: as a conse-
quence, if a path corresponds to a file, the monitor will emit an error and
will not be able to watch it.

For the same reasons, the (--directories/-d) has no effect when using
this monitor.

5.6.1.3 Recursivity

The Windows API will return change events related to a watched directory
and any children of its, at any depth. Essentially, the subtree rooted at a
directory is recursively watched even if the -r option is not used explicitly.

5.7 The Poll Monitor
The poll monitor was added as a fallback mechanisms in the cases where no
other monitor could be used, including:

• Operating system without any sort of file events API.

• Situations where the limitations of the available monitors cannot be
overcome2.

The poll monitor, available on any platform, only relies on available
CPU and memory to perform its task.

5.7.1 Peculiarities

5.7.1.1 Performance Problems

The resource consumption of this monitor increases increases linearly with
the number of files being watched (the resulting system performance will
probably degrade linearly or quicker).

The authors’ experience indicates that fswatch requires approximately
150 MB of RAM memory to observe a hierarchy of 500,000 files with a min-
imum path length of 32 characters. A common bottleneck of the poll moni-
tor is disk access, since stat()-ing a great number of files may take a huge
amount of time. In this case, the latency (see [Latency], page 22) should be
set to a sufficiently large value in order to reduce the performance degra-
dation that may result from frequent disk access; this monitor, in fact, will
re-scan all the monitored object hierarchy looking for differences every time
its ‘monitoring loop’ is repeated.

Note: Using a disk drive with lower latencies may certainly help,
although the authors suspect that switching to an operating system

2 E.g.: observing a number of files greater than the available file descriptors on a
system using the kqueue monitor.

34 fswatch 1.17.0

with proper file monitoring APIs is a better solution when perfor-
mance problems with the poll monitors are experienced or when
fswatch should drive mission-critical processes.

5.7.1.2 Missing Events and Missing Event Flags

Since this monitor periodically checks the state of monitored objects looking
for differences, it may miss events happened between one scan and another.
Let’s suppose, for example, that a file file exists at time t0 when a scan
occurs. The poll monitors detects file and saves the relevant attributes in
memory. file is then updated, moved to another place and recreated with
the same name. The chain of events3 occurred to file are:

• Updated

• MovedFrom (or Deleted)

• Created

• Link

At time t1, another scan runs and the poll monitor detects that the mod-
ification date has changed. The poll monitor can only infer that a ‘change’
has occurred and raises an Updated event; other events that would be noticed
and raised by other APIs are effectively lost since they go unnoticed.

The odds of incurring such a loss is inversely proportional to the latency
l: reducing the latency helps alleviating this problem, although on the other
hands it also results in linearly increasing resource usage.

5.8 How to Choose a Monitor
fswatch already chooses the ‘best’ monitor for your platform if you do not
specify any. However, a specific monitor may be better suited to specific use
cases. Please, see Chapter 5 [Monitors], page 29, to get a description of all
the available monitors and their limitations.

Usage recommendations are as follows:

• On Apple macOS, use only the FSEvents monitor (which is the default
behaviour).

• On Solaris/Illumos-based systems, use the File Events Notification mon-
itor.

• On Linux, use the inotify monitor (which is the default behaviour).

• If the number of files to observe is sufficiently small, use the kqueue
monitor. Beware that on some systems the maximum number of file
descriptors that can be opened by a process is set to a very low value
(values as low as 256 are not uncommon), even if the operating system
may allow a much larger value. In this case, check your OS documen-
tation to raise this limit on either a per process or a system-wide basis.

3 The actual chain of events may in fact vary depending on the monitor being used.

Chapter 5: Monitors 35

• If feasible, watch directories instead of watching files. Properly crafting
the receiving side of the events to deal with directories may sensibly
reduce the monitor resource consumption.

• If none of the above applies, use the poll monitor. The authors’ expe-
rience indicates that fswatch requires approximately 150 MB of RAM
memory to observe a hierarchy of 500,000 files with a minimum path
length of 32 characters. A common bottleneck of the poll monitor is
disk access, since stat()-ing a great number of files may take a huge
amount of time. In this case, the latency should be set to a sufficiently
large value in order to reduce the performance degradation that may
result from frequent disk access.

37

Appendix A GNU Free Documentation
License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Founda-
tion, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document free in the sense of freedom: to assure
everyone the effective freedom to copy and redistribute it, with or with-
out modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get credit
for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It com-
plements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free soft-
ware, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the soft-
ware does. But this License is not limited to software manuals; it can
be used for any textual work, regardless of subject matter or whether it
is published as a printed book. We recommend this License principally
for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium,
that contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that work
under the conditions stated herein. The “Document”, below, refers to
any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or
distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifica-
tions and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the pub-
lishers or authors of the Document to the Document’s overall subject (or

http://fsf.org/

38 fswatch 1.17.0

to related matters) and contains nothing that could fall directly within
that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice that
says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to
be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then
there are none.

The “Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License. A Front-Cover Text may be
at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general
public, that is suitable for revising the document straightforwardly with
generic text editors or (for images composed of pixels) generic paint pro-
grams or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modi-
fication by readers is not Transparent. An image format is not Trans-
parent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTEX input format, SGML or
XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples
of transparent image formats include PNG, XCF and JPG. Opaque
formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-
generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this
License requires to appear in the title page. For works in formats which
do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning
of the body of the text.

Appendix A: GNU Free Documentation License 39

The “publisher” means any person or entity that distributes copies of
the Document to the public.

A section “Entitled XYZ” means a named subunit of the Document
whose title either is precisely XYZ or contains XYZ in parentheses fol-
lowing text that translates XYZ in another language. (Here XYZ stands
for a specific section name mentioned below, such as “Acknowledge-
ments”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that
it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice
which states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either com-
mercially or noncommercially, provided that this License, the copyright
notices, and the license notice saying this License applies to the Docu-
ment are reproduced in all copies, and that you add no other conditions
whatsoever to those of this License. You may not use technical mea-
sures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in ex-
change for copies. If you distribute a large enough number of copies you
must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add
other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the
actual cover, and continue the rest onto adjacent pages.

40 fswatch 1.17.0

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and
modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or enti-
ties responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified
Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adja-
cent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice
giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

Appendix A: GNU Free Documentation License 41

I. Preserve the section Entitled “History”, Preserve its Title, and add
to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If
there is no section Entitled “History” in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least
four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”,
Preserve the Title of the section, and preserve in the section all the
substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in
their text and in their titles. Section numbers or the equivalent are
not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may
not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements”
or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from
the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant
Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various parties—
for example, statements of peer review or that the text has been ap-
proved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of
Cover Texts in the Modified Version. Only one passage of Front-Cover
Text and one of Back-Cover Text may be added by (or through ar-
rangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrange-
ment made by the same entity you are acting on behalf of, you may not

42 fswatch 1.17.0

add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under
this License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the Invari-
ant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice, and
that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single copy.
If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end
of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice
of the combined work.

In the combination, you must combine any sections Entitled “History”
in the various original documents, forming one section Entitled “His-
tory”; likewise combine any sections Entitled “Acknowledgements”, and
any sections Entitled “Dedications”. You must delete all sections Enti-
tled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other docu-
ments released under this License, and replace the individual copies of
this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an “aggregate” if the copyright resulting
from the compilation is not used to limit the legal rights of the com-
pilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to
the other works in the aggregate which are not themselves derivative
works of the Document.

Appendix A: GNU Free Documentation License 43

If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one half of the entire
aggregate, the Document’s Cover Texts may be placed on covers that
bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing
Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, pro-
vided that you also include the original English version of this License
and the original versions of those notices and disclaimers. In case of
a disagreement between the translation and the original version of this
License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedi-
cations”, or “History”, the requirement (section 4) to Preserve its Title
(section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document ex-
cept as expressly provided under this License. Any attempt otherwise to
copy, modify, sublicense, or distribute it is void, and will automatically
terminate your rights under this License.

However, if you cease all violation of this License, then your license from
a particular copyright holder is reinstated (a) provisionally, unless and
until the copyright holder explicitly and finally terminates your license,
and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated
permanently if the copyright holder notifies you of the violation by some
reasonable means, this is the first time you have received notice of vi-
olation of this License (for any work) from that copyright holder, and
you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does
not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new ver-

44 fswatch 1.17.0

sions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns. See http://www.gnu.org/
copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation. If the Document specifies
that a proxy can decide which future versions of this License can be used,
that proxy’s public statement of acceptance of a version permanently
authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A public
wiki that anybody can edit is an example of such a server. A “Massive
Multiauthor Collaboration” (or “MMC”) contained in the site means
any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Francisco, Califor-
nia, as well as future copyleft versions of that license published by that
same organization.

“Incorporate” means to publish or republish a Document, in whole or
in part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License,
and if all works that were first published under this License somewhere
other than this MMC, and subsequently incorporated in whole or in
part into the MMC, (1) had no cover texts or invariant sections, and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the
site under CC-BY-SA on the same site at any time before August 1,
2009, provided the MMC is eligible for relicensing.

http://www.gnu.org/copyleft/
http://www.gnu.org/copyleft/

Appendix A: GNU Free Documentation License 45

ADDENDUM: How to use this License for your
documents
To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices
just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the “with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other com-
bination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of free
software license, such as the GNU General Public License, to permit their
use in free software.

47

Appendix B Index of Functions

F
fsw_destroy_session 3
fsw_event_flag::Overflow 3

G
getopt_long . 14

I
inotify_add_watch 31
inotify_init . 31
inotify_rm_watch . 31

K
kevent . 31

R
read . 9, 11
ReadDirectoryChangesW 7
realpath . 13
regcomp . 21, 22

S
stat . 7, 33, 35

49

Appendix C Index of Programs

F
find . 11
fsw . 6, 7
fswatch . 7
fswatch-run . 3, 4, 5, 6

G
gettext . 4
git . 4, 5

R
rsync . 9

X
xargs . 4, 9, 11

51

Appendix D Index of Files

A
AUTHORS . 7
autogen.sh . 4

C
ChangeLog . 4
CONTRIBUTING.md . 7

M
Makefile.am . 4

R
README.md . 3

53

Appendix E Index of Command Line
Options

This appendix contains an index of all fswatch long command line options.
The options are listed without the preceding double-dash.

A
access, summary . 15
allow-overflow, inception 3
allow-overflow, summary 15

B
batch-marker, detail 12, 19
batch-marker, summary 15

D
directories, inception 3
directories, summary 15

E
event, inception . 3
event, mask . 2
event, summary . 15
event-flag-separator, summary 15
event-flags, detail 23
event-flags, summary 15
exclude, detail . 21
exclude, summary . 15
extended, summary 15

F
filter-from, summary 15
fire-idle-events, summary 16
follow-links, detail 23
follow-links, summary 16
format, summary . 16
format-time, summary 16
from-file, detail . 21

H
help, summary . 16

I
include . 5
include, detail . 21
include, inception . 5
include, summary . 16
insensitive, summary 16

L
latency, detail . 22
latency, summary . 16
list-monitors, summary 16

M
monitor, detail . 25
monitor, summary . 16
monitor-property, summary 16

N
no-defer, summary 16
numeric, detail . 24
numeric, summary . 16

O
one-event, detail . 12
one-event, summary 17
one-per-batch, inception 6
one-per-batch, summary 17

P
print0, summary . 17

R
recursive, detail . 26
recursive, summary 17

54 fswatch 1.17.0

T
timestamp, summary 17

U
utc-time, summary 17

V
verbose, summary . 17
version, summary . 17

55

Index

%
%%, format directive . 18
%0, format directive . 18
%f, format directive . 18
%n, format directive . 18
%p, format directive . 18
%t, format directive . 18

A
Apple macOS . 5, 7
authors . 7
Autoconf . 4

B
Bash . 3, 5, 6
batch marker . 12, 19
batch marker, inception 4
BSD . 7
buffer overflow . 32
bug . 7
bug report . 7

C
C++ . 5
C++, initializer list . 5
C++11 . 5
changes, detecting . 9
changes, observing . 10
C . 5

E
error codes . 13
event flag . 23
event flag, numeric . 24
event flag, peculiarities 24
event flag, pitfalls . 24
event flag, separator 19
event mask, add . 10
event type filter . 22
event, flags . 11
event, flags, numeric 11
event, idle . 20
exit codes . 13

F
File Events Notification monitor 31
File Events Notifications 7
File System Events, see FSEvents 7
filter, by event type . 22
format, builtin . 19
format, event flag separator 19
FreeBSD . 4, 7
FSEvents . 7
FSEvents monitor . 30
FSEvents, API . 7
fsw . 6
fsw, merging with fswatch 7
fswatch, bulk mode . 9
fswatch, initial version 7
fswatch, main mode 10
fswatch, merging with fsw 7
fswatch, repository . 7
fswatch, source code 7

G
gettext . 4
Git . 4, 5
GitHub . 7
GNU gettext . 4

I
Illumos . 7
inotify . 7
inotify monitor . 31

K
kqueue . 7
kqueue monitor . 31

L
latency . 22
Linux . 7
long options . 14

56 fswatch 1.17.0

M

Microsoft Windows . 7

Microsoft Windows monitor 7

missing events . 34

monitor, available . 29

monitor, choosing . 25

monitor, File Events Notification 31

monitor, fse . 7

monitor, FSEvents 7, 30

monitor, FSEvents,

custom properties 30

monitor, FSEvents, peculiarities 30

monitor, inotify . 7, 31

monitor, inotify, duplicate events 32

monitor, inotify, overflow 31

monitor, inotify, peculiarities 31

monitor, inotify, queue overflow 31

monitor, kqueue . 7, 31

monitor, kqueue, peculiarities 31

monitor, Microsoft Windows 7

monitor, poll . 7, 33

monitor, poll, missing events 34

monitor, poll, peculiarities 33

monitor, poll, performanc 33

monitor, recursive scanning 26

monitor, recursive

scanning, directories 27

monitor, tunable . 27

monitor, Windows . 32

monitor, Windows, buffer overflow 32

monitor, Windows, overflow 32

monitor, Windows, peculiarities 32

monitors, available . 29

O

options . 15

options, list . 15

options, long . 14

options, short . 14

P
parseability . 10
patch filter, case sensitivity 22
path filter . 20, 21
path filter, exclusion 20, 21
path filter, exexution order 21
path filter, extended

regular expression 22
path filter, file . 21
path filter, inclusion 20, 21
path filter, modifier . 22
path filter, regular expression 22
path filter, type . 21
Poll monitor . 33

Q
queue overflow . 31

R
record, format . 10, 17
record, format, custom 18
record, format, directives 18
record, format, escape character 18
record, parsing . 10, 11
record, piping . 11
recursive scanning . 26

S
short options . 14
single event . 12
Solaris . 7
symbolic link . 23
syntax . 13

T
timestamp, add . 10
tutorial . 9

W
whitespace . 17
Windows monitor . 32

Z
Zsh . 3, 4, 5, 6

	1 Version History
	1.17.0
	1.16.0
	1.14.0
	1.12.0
	1.11.3
	1.11.2
	1.11.1
	1.11.0
	1.10.0
	1.9.3
	1.9.2
	1.9.1
	1.9.0
	1.8.0
	1.7.0
	1.6.0
	1.5.1
	1.5.0
	1.4.7
	1.4.6
	1.4.5.3
	1.4.5.2
	1.4.5.1
	1.4.5
	1.4.4
	1.4.3.2
	1.4.3.1
	1.4.3
	1.4.2
	1.4.1.1
	1.4.1
	1.4.0
	1.3.9
	1.3.8
	1.3.7
	1.3.6
	1.3.5
	1.3.4
	1.3.3
	1.3.2

	2 Introduction
	History and fswatch Authors
	Reporting Bugs and Suggestions

	3 Tutorial Introduction to fswatch
	Detecting File System Changes
	Observing File System Changes
	Event details
	Parseability Issues
	Numeric Event Flags

	Processing fswatch Output
	Detecting the Boundaries of a Batch of Changes
	Receiving a Single Event

	4 Invoking fswatch
	Synopsis of fswatch
	The Two Option Styles
	Long Options
	Short Options

	fswatch Options
	Whitespace and Record Format
	Custom Record Formats
	Format Directives
	Record Termination
	Event Flag Separator
	Builtin Formats

	Batch Marker
	Idle events
	Filtering by Path
	Specifying Filters
	Filter File Format

	Types of Filters and Order of Execution
	Filter Modifiers

	Filtering by Event Type
	Latency
	Symbolic Links
	Event Flags
	Peculiarities and Pitfalls
	Numeric Event Flags

	Choosing a Monitor
	Recursive Scanning
	Recursively Watching Directories

	Monitor Tunables

	5 Monitors
	Available Monitors
	The FSEvents Monitor
	Peculiarities
	Custom Properties

	The kqueue Monitor
	Peculiarities

	The File Events Notification Monitor
	The inotify Monitor
	Peculiarities
	Queue Overflow
	Duplicate Events

	The Windows monitor
	Peculiarities
	Buffer Overflow
	Directory Watching
	Recursivity

	The Poll Monitor
	Peculiarities
	Performance Problems
	Missing Events and Missing Event Flags

	How to Choose a Monitor

	A GNU Free Documentation License
	B Index of Functions
	C Index of Programs
	D Index of Files
	E Index of Command Line Options
	Index

